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• Introduction to machine learning 

– Meaning of ordinary learning and its translation to machine learning

– Classes of problems suitable for machine learning

– Classification 

• Regression 

– Linear  regression

– Logistic regression 
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Agenda



• The goal of machine learning is to predict a future based on what is learned about the past or about similar 
situations.

• What does it mean to learn?

• Learning invokes the notion of cumulative experiences that allow one to recognize a situation or be able to 
solve/handle a similar problem to one that has been seen in the past.

• The ability to generalize a problem-solving skill is what is generally meant by learning.

• Generalization is central to the concept of learning, and it is this model of learning that we attempt to build into 
our machines.

• Machine Learning is a framework for induction or inference of general conclusions based on particular 
examples or instances.
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Machine Learning
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• The basic setup for machine learning is illustrated
on the right.

• This could be the setup Netflix might implement as
an algorithm for predicting the kinds of movies you
might like to watch; they might write a program
that is trained on the movies you have watched in
the past. The data for the program would be the
movies you have watched and rated. The
algorithm’s job is to find a function 𝑓 that will map
a new example to a corresponding prediction.

• The algorithm would then be evaluated (tested) on
sample test data. This is similar to the way you
will be tested in your final exams in any course you
take this semester. If you pass, the assumption is
that you will be able to solve similar problems
your employer throws at you.

General Setup for Supervised Machine Learning



• Machine learning cannot be  used for all types of problems you encounter in life.

• There are classes of problems that machine learning  is  good  at; the problems must be carefully selected.  

Below are a few types of problem classes that machine learning can tackle.

• Regression – simple prediction of  real numbers, for example, a stock price price next week based on what 

it was during the past 7 days.

• Ranking – this is when you try to put a set of things in order of relevance. This is what Google Search 

does; it responds to your query with a list of items ranked according to what the search engine believes is 

closest to you query.

• Binary classification – when you only want  a simple yes or no answer.  You could create an algorithm to 

predict whether students like to eat at Skibo cafe after you perform a survey (this is your training data).

• Multiclass classification – when you have a large basket of fruit (oranges, apples, kiwis and pears), you 

can write an algorithm to sort the fruit, each into its own class.
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Types of Problems Solvable by Machine Learning 



• To be useful in the context of machines, we must formalize the concept of learning 

• At least three things must be defined that would allow one to teach a machine anything:

– One must create a metric (measurement) for performance on a particular problem of interest.

– The performance of an algorithm must be measured on unseen data.

– There should be a relationship between the data the algorithm sees during training time and the data it sees during testing time; 

in the end, we also want the algorithm to be used only for similar but unseen data.

• A good metric to use for gauging the items above is a function called the loss function, ℒ(. , . ) with two 

arguments;

• For variables 𝑦 and 𝑦 in the argument of the loss function, we expect the value of ℒ(𝑦, 𝑦) to measure the 

error.

• For ordinary regression, the loss function is ℒ 𝑦, 𝑦 = 𝑦 − 𝑦 2 = 𝑦 − 𝑦 Eqn. (4.1)
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Formalizing learning 



• In binary classification, the loss function is a simple yes/no or 0/1 situation that can be written as

ℒ 𝑦, 𝑦 = ቊ
0 if y = y
1 oherwise

Eqn. (4.2)

• For multiclass classification, we can use a similar loss function to the binary classification case.

• Expected loss, 𝐸 𝑥, 𝑦 , for input and output variables 𝑥 and 𝑦 can be written as 

𝐸 𝑥, 𝑦 ⟶ 𝐷 ℒ 𝑦, 𝑓 𝑥 Eqn. (4.3)

• The expected loss is the average loss for random variables (𝑥, 𝑦) drawn from a sample 𝐷. For a discrete 

probability distribution, the expectation would be written as

𝐸 𝑥, 𝑦 ⟶ 𝐷 ℒ 𝑦, 𝑓 𝑥 = σ(𝑥,𝑦)∈𝐷 𝐷 𝑥, 𝑦 ℒ 𝑦, 𝑓 𝑥 Eqn. (4.4)

• Note that 𝐷 is a discrete, finite distribution such as 𝑥2, 𝑦1 , (𝑥2, 𝑦2)… (𝑥𝑁, 𝑦𝑁) with equal weight  in  

each sample, Τ1 𝑁, this means the average loss is then 

𝐸 𝑥, 𝑦 ⟶ 𝐷 ℒ 𝑦, 𝑓 𝑥 = Τ1 𝑁

𝑛=1

𝑁

ℒ 𝑦𝑛, 𝑓 𝑥𝑛 Eqn. (4.5)
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Loss Functions for Binary and Multiclass Classification 



• Classification is determination of a target function 𝑓 that assigns (maps) an attribute or set of attributes 𝑥
to predefined class labels 𝑦.

• It is a tool for distinguishing between objects of different classes, or a tool that can also be used to predict 

unknown records.

• Classification methods are best for predicting data sets with binary or nominal categories.

• Classifiers are created using 

– Rule-based methods;

– Support vector machines;

– Bayes statistics;

– Tree-based approaches  or

– Neural networks
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Classification  



• One evaluates a classifier model on the counts of test data it correctly and incorrectly predicts.

• The accuracy of a classifier is quantified as

Accuracy =
Number of correct predictions

Total number of predictions
.

• The error rate is defined similarly as

Error Rate =
Number of incorrect predictions

Total number of predictions
.

• Classification models can usually serve as explanatory tools for objects of different classes.
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Evaluation of Classifiers



• A decision tree model is another way to create an algorithm that a machine can implement;

• There is no best way to finding the optimal decision tree.  The best-known approach uses what is called 

the greedy strategy to grow a tree.

• The greedy strategy makes a series of locally optimal decisions that contribute to partitioning the data.

• The best-known method for the greedy strategy is Hunt’s algorithm, which is recursive and successfully 

partitions the training data into purer subsets.

• If 𝐷𝑇 is the training data set associated with node 𝑇 and the corresponding labels are 𝑦 = 𝑦1, 𝑦2, … 𝑦𝑛 , 

then one can implement Hunt’s algorithm with the steps on the next slide.
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Decision Trees



• If all records (data) in 𝐷𝑇 belong to same class 𝑦𝑇 , then 𝑇 is a leaf node.

• If 𝐷𝑇 has records (data) that belong to more than one class, then an attribute (feature) test condition is

selected to partition the data into smaller subsets; a child node is created for each outcome of the test

condition, and the data 𝐷𝑇 is distributed to the children based on the outcomes. The process is recursively

applied to each child node.

• One can use the bank lender’s problem to illustrate Hunt’s method.

• We assume the banker has accumulated lots of data similar to what is on the next slide; (s)he wants to use

it to predict default rate of future customers who wish to borrow money from the bank.

• Algorithms like these can lead to red-lining practices, frowned on because they lead to inequities.
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Hunt’s Algorithm for Decision Tree Creation 
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• By casually inspecting the data, one notices that people who own cars do not default. We therefore 

use this as root node.

Bank Data from Customers and Creation of a Decision Tree
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• The data also suggests that we consider 
income for single, divorced people.  
Resulting tree would be as shown on left.

• Hunt’s algorithm works if every 
combination of attributes is present in 
training data and each combination has a 
unique label. If a child node in step 2 is 
empty, then it is declared a node.

• In step 2, if data has identical attribute 
values, then it is not possible to split node 
any further, then the node is declared a leaf.

Decision Tree Addition after First Pass



• It is typically difficult to decide on how to split the training data when using the decision tree model.

• A second issue, once one has made the decision to split the data, is how to stop the splitting procedure.

• One way to handle the issue of splitting the data is by selecting a test condition for dividing the data into 

smaller subsets; an objective measure must be provided for evaluating the “goodness” for each test 

condition.

• Stopping the process can be done by continuing to expand the mode until all data have identical attributes 

or the data belongs to the same class. 
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Problems with Decision Tree Induction 



• There is a sharp rule on how to split the data or when to stop the decision tree from creating another child 
node. The illustration below shows several equally valid ways.
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Bank Data Splitting Decision Tree Options
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• Linear regression is one of the simplest algorithms 
that can be used to demonstrate the idea of a 
machine learning algorithm for predicting a range of 
continuous values. A prototypical function for linear 
regression is 

𝑦 = 𝑤𝑥 + 𝑏 Eqn. (4.6).

• The variables  𝑤 and 𝑏 are parameters of the model 
that must be “learned” to produce the most accurate 
predictions of 𝑦 for input 𝑥;

• We are given the sales and advertising amounts for 
several companies in the table (matrix) to the right. 
The columns (features) represent expenditures on 
advertising and number of units sold in a year.

• Our goal is to develop a function that predicts units 
sold; note that rows (observations) represent the 
names of companies.

Linear Regression as a Machine Learning Algorithm



• Assume a nominal predictive model of the form: y= 𝑤 ∗ 𝐴𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑖𝑛𝑔 + 𝐵𝑖𝑎𝑠.

• The variable coefficient  𝑤 is called the “weight” in machine learning; “Advertising” is an independent 

variable called the “feature” in machine learning. ”Bias” is the intercept and is the offset.

• The goal for our model and the resulting algorithm is to learn the values of the variable “𝑤” and the “Bias” 

during training.

• We care most about accuracy, and measure it by a cost function, which permits optimization of the 

weights.

• In linear regression, the best cost function is the mean square error (MSE) or the 𝐿2 norm.
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Example: Predicting Sales Units from Advertising Amount



• The predictive model in the previous slide can be written as

𝑦 = 𝑤𝑥 + 𝑏, Eqn. (4.7)

• Where 𝑦 is the sales, x the advertising amount, and 𝑏 the bias.

• The mean square error (MSE) can therefore be computed from 

𝑀𝑆𝐸 = 𝑓 𝑤, 𝑏 =
1

𝑁


𝑖=1

𝑁

𝑦𝑖 − 𝑤𝑥𝑖 + 𝑏 2 Eqn. (4.8)

• We can optimize our choices for 𝑤 and 𝑏 by taking the derivative of the 𝑀𝑆𝐸 function above to get 

𝑓′ 𝑤, 𝑏 =

𝜕𝑓

𝜕𝑤
𝜕𝑓

𝜕𝑏

=

1

𝑁
σ𝑖−2𝑥𝑖 𝑦𝑖 − 𝑤𝑥𝑖 + 𝑏

1

𝑁
σ𝑖−2 𝑦𝑖 − 𝑤𝑥𝑖 + 𝑏

Eqn. (4.9)

• The sign of the derivative (gradient) tells us which direction we should update to reduce the cost function. 

We move in direction opposite to that of the gradient. Size of the update is controlled by the learning rate.
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Cost Function for Linear Regression 
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• To train the model, we iteratively loop through the 
dataset, each time updating the weight “𝑤” and the 
bias “𝑏” in the direction indicated by the sign of 
the slope of the cost function. Training is 
accomplished when the error (cost) function is at 
its minimum or when the training iterations fail to 
reduce the cost function.

• At the beginning of the training, the weight 𝑤 and 
bias 𝑏 are initialized to some random values 
(default values). The hyper parameters, which in 
this case are the learning rate and the number of 
iterations, must also be set at the beginning of 
training.

• One way to track progress is to plot the 𝑀𝑆𝐸 as a 
function of training iterations (see sketch on right).

Training of the Linear Regression model 



• If the computer companies we discussed earlier, advertised in several places: radio, TV, and web, then the 

model must be extended to all relevant variables; the sales function is now written as

𝑦 = 𝑤1 𝑟𝑎𝑑𝑖𝑜 + 𝑤2 𝑇𝑉 + 𝑤3 𝑤𝑒𝑏 + b Eqn. (4.10).

• For convenience, we set the bias term to 𝑏 = 0. The cost function is therefore 

𝑓 = 𝑀𝑆𝐸 =
1

2𝑁
σ𝑖=1
𝑁 𝑦𝑖 − 𝑤1𝑥1𝑖 + 𝑤2𝑥2𝑖 + 𝑤3𝑥3𝑖

2 Eqn. (4.11).

• We have divided by 2N so that when we take the derivative, the 2 from the differentiation cancels the 2 

from the 2𝑁.

• The gradient of Eqn. (4.11) is a vector of partial derivatives  given by 

𝜕𝑓

𝜕𝑤1

𝜕𝑓

𝜕𝑤2

𝜕𝑓

𝜕𝑤3

=

1

𝑁
−𝑥1𝑖 𝑦𝑖 − 𝑤1𝑥1𝑖 + 𝑤2𝑥2𝑖 + 𝑤3𝑥2𝑖

1

𝑁
−𝑥2𝑖 𝑦𝑖 − 𝑤1𝑥1𝑖 + 𝑤2𝑥2𝑖 + 𝑤3𝑥3𝑖

1

𝑁
−𝑥3𝑖 𝑦𝑖 − 𝑤1𝑥1𝑖 + 𝑤2𝑥2𝑖 + 𝑤3𝑥3𝑖

Eqn. (4.12)
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Multivariate Regression 



• The typical task in machine learning where regression is a viable 

approach is stated as follows:

• Given the dataset on the right, determine the function (model) that 

predicts outputs for any future input data that the machine has not 

seen yet but is similar in kind to what it was trained on. 

• In machine learning, we do not know the model, we must let the 

machine find a model with the most optimal parameters.

• For an assumed linear model, the cost function must then be

𝑓 𝑚, 𝑏 = 𝑀𝑆𝐸 =
1

𝑁
σ𝑖−1
𝑁 𝑦𝑖 − 𝑚𝑥𝑖 + 𝑏 2 Eqn. (4.13).

• The quantity in brackets is the error and is a function of 𝑚 and 𝑏. A 

one-time error for a data pair (𝑥𝑖 , 𝑦𝑖) is called the loss function but 

the average sum is called the cost function.
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Regression Algorithm for Machine learning
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• Notice that the error in Eqn. (4.13) is squared, 
which means it is a convex function; convex 
functions have a minimum with respect to  
relevant parameters.

• The method of gradient descent is the best 
approach for determining the minimum of the 
cost function iteratively by a machine.

• The error (cost) function can be plotted 
(sketched in this case) as illustrated on the left.

• When cost is plotted as a function of the 
parameters 𝑚 and 𝑏, one obtains a 3D surface.

Analysis of a Cost Function 



• To implement gradient descent in our simple regression problem, we need

– To determine which way to go on the hill (up or down ) toward the minimum; and 

– Determine how big a step to take when we decide which direction to take.

• In the previous slide, if we are at position 1, and determine that the slope is of a certain value and   

direction, we can take fairly large steps down the slope.

– Once we get to position 2, we realize the slope is smaller than it was at 1, and so we must take smaller steps so that we don’t 

overshoot the minimum (bottom);

• Mathematically, our cost was defined by (4.13) as

𝑓 𝑚, 𝑏 =
1

𝑁
σ𝑖=1
𝑁 𝑦𝑖 − 𝑚𝑥𝑖 + 𝑏 2 Eqn. (4.13)

• The slope vector was determined to be 

𝜕𝑓

𝜕𝑚
𝜕𝑓

𝜕𝑏

=

−2

𝑁
σ𝑖=1
𝑁 𝑥𝑖 𝑦𝑖 − 𝑚𝑥𝑖 + 𝑏

−2

𝑁
σ𝑖=1
𝑁 𝑦𝑖 − 𝑚𝑥𝑖 + 𝑏

Eqn. (4.9)
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Implementation of Gradient Descent 



• The step sizes we take constitute the “learning rate”; for initial random values of 𝑚 and 𝑏, after taking a 

given step size, one must modify the values of  𝑚 and b.  Thus

ቑ
𝑚 = 𝑚 − 𝛼

𝜕𝑓

𝜕𝑚

𝑏 = 𝑚 − 𝛼
𝜕𝑓

𝜕𝑏

Eqn. (4.14), where 𝛼 is the learning rate  (step size).

• For  each iteration we make, we recalculate the cost function to make sure it is decreasing. We stop the 

gradient descent process when the cost function is at its lowest.

• To determine the derivatives Τ𝜕𝑓 𝜕𝑚 and Τ𝜕𝑓 𝜕𝑏 , we must use the chain rule of differentiation; to see this 

explicitly, we rewrite the cost function as
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Implementation of Gradient Descent 



• Cost function in Eqn. (4.15) is now an explicit function of the error, which is a function of 𝑚 and 𝑏.

• The  derivative vector of the cost function  now becomes

𝜕𝑓

𝜕𝑚
𝜕𝑓

𝜕𝑏

=
−2.

𝑒𝑟𝑟𝑜𝑟

𝑁
𝑥𝑖

−2.
𝑒𝑟𝑟𝑜𝑟

𝑁
. 1

=
−2.< 𝑒𝑟𝑟𝑜𝑟𝑟 >. 𝑥𝑖
−2.< 𝑒𝑟𝑟𝑜𝑟 > .1

Eqn. (4.16);

• We have ignored the summation for clarity and have now written the error as average error < 𝑒𝑟𝑟𝑜𝑟𝑟 >
because of the division by the number of instances of the data, N.

• The chain rule comes from the fact that the cost function can be written as a nested function, 

𝑓 = 𝑒 𝑦(𝑥) , whose derivative 𝑓′ = Τ𝜕𝑒 𝜕𝑦 Τ𝜕𝑦 𝜕𝑥 .
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Implementing the Gradient Descent 



• Sometimes the models we want should give discrete and not continuous outputs.  Examples of these kind 

include questions like:

– Will a person repay a loan or not (yes/no), given certain things you know about them?

– Will it snow tomorrow, given that today is sunny and yesterday was sunny?

– Will I get an “A” in this class given that I have done all the HW and passed all the quizzes with scores of over 80%?

• The task we have at hand is to analyze data that pertains to questions like those above. The output is 

clearly binary (yes/no). These types of situations are important in machine learning. 

• We need to have a conditional distribution of the output, given the input variables: in another words, we 

seek 𝑃 𝑌 𝑋 .

• To link the input variable to the probability, we introduce a quantity called odds: this is the ratio of the 

probability of an event happening to the probability that it will not happen;

Odds =
𝑝

1−𝑝
Eqn. (4.17).
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Logistic Regression: Conditional Probabilities 



• Probabilities are distributed between 0 and 1 but input variables are generally not. We cannot link the 

odds ratio directly to a linear combination of independent variables because it does not make sense.

• Best strategy is to consider the natural logarithm of the odds ratio and link that to the linear combination 

of input variables, thus

𝑙𝑛
𝑝(𝑥)

1−𝑝(𝑥)
= σ𝑖=0

𝑘 𝑎𝑖𝑥𝑖 Eqn. (4.18);

• The simplest case of this linear combination could be 

𝑎0 + 𝑎1𝑥1 = σ𝑖=0
1 𝑎𝑖𝑥𝑖 Eqn. (4.19)

• We have set 𝑥0 = 1 to permit adding a bias term 𝑎0.  The left-hand side of Eqn. (4.19) is called the logit 

of 𝑝(𝑥), which is where the term logistic regression comes from.

• Eqn. (4.19) can be rewritten (using the relationship between exponentials and natural logarithms) as

𝑝(𝑥)

1−𝑝(𝑥)
= exp σ𝑖=0

𝑘 𝑎𝑖𝑥𝑖 = ς𝑖=0
𝑘 exp 𝑎𝑖𝑥𝑖 Eqn. (4.20).
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Odds Ratio and its Relationship to Logit



• Eqn. (4.19) suggests that logistic models are multiplicative in their inputs;  the value of exp(𝑎𝑖) tells us 

how the odds of the output being true increase or decrease as 𝑥𝑖 increases by one unit.

• For example: if 𝑎𝑖 = 0.693, then exp 0.693 = 2. If 𝑥𝑖 is a numerical variable such as someone’s weight 

in pounds, then every increase in weight by one pound, doubles the odds of that person being overweight 

(as the output), if other things remain the same. 

• One can invert Eqn. (4.20) as follows:

𝑝 𝑦 =
exp 𝑦

1+exp 𝑦
, where 𝑦 = σ𝑖=0

𝑘 𝑎𝑖𝑥𝑖 Eqn. (4.21).

• Finally, we have a function linking the real number line to the probability interval between 0 and 1, 0,1 .

• By the chain rule of differentiation, the derivative of 𝑝 𝑦 in  Eqn. (4.21) is 

𝑝′(𝑦) = 𝑝(𝑦) 1 − 𝑝(𝑦) Eqn. (4.22).
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Logistic Regression 



• If required, the gradient of 𝑝(. ) with respect to the coefficients 𝑎𝑖 can be obtained as

𝜕𝑝

𝜕𝑎
= 𝑝(𝑦) 1 − 𝑝(𝑦)

𝜕𝑦

𝜕𝑎
Eqn. (4.23).

• A solution to a logistic regression problem is therefore the set of parameters 𝑎𝑖 that maximizes the 

likelihood of the data 𝑥𝑖.

• One can express the solution as a product of the predicted probabilities of the 𝑘 individual observations, 

thus

ℒ 𝑥 𝑝 = ς𝑖=1|𝑥𝑖=1
𝑘 𝑝(𝑥𝑖)ς𝑖=1|𝑥𝑖=0

𝑘 1 − 𝑝(𝑥𝑖) Eqn. (4.24).
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Solution of a Logistic Regression Problem



• Reviewed the concept of learning

– Learning in machines

– Classification

• Introduced regression in machine learning 

– Linear models in learning

– Logistic regression: mapping  continuous input variables to probability 

30

Summary


